Руководство по SQL: Как лучше писать запросы (Часть 1)

30.08.19

База данных - HighLoad оптимизация

Предлагаю вашему вниманию перевод статьи Karlijn Willems SQL Tutorial: How To Write Better Queries". Оригинал доступен по ссылке https://www.datacamp.com/community/tutorials/sql-tutorial-query. Узнайте о антипаттернах, планах выполнения, time complexity, настройке запросов и оптимизации в SQL.
Язык структурированных запросов (SQL) является незаменимым навыком в индустрии информатики, и вообще говоря, изучение этого навыка относительно просто. Однако большинство забывают, что SQL — это не только написание запросов, это всего лишь первый шаг дальше по дороге. Обеспечение производительности запросов или их соответствия контексту, в котором вы работаете, — это совсем другая вещь.


Вот почему это руководство по SQL предоставит вам небольшой обзор некоторых шагов, которые вы можете пройти, чтобы оценить ваш запрос:
 

  • Во-первых, вы начнете с краткого обзора важности обучения SQL для работы в области науки о данных;
  • Далее вы сначала узнаете о том, как выполняется обработка и выполнение запросов SQL, чтобы понять важность создания качественных запросов. Конкретнее, вы увидите, что запрос анализируется, переписывается, оптимизируется и окончательно оценивается.
  • С учетом этого, вы не только перейдете к некоторым антипаттернам запросов, которые начинающие делают при написании запросов, но и узнаете больше об альтернативах и решениях этих возможных ошибок; Кроме того, вы узнаете больше о методическом подходе к запросам на основе набора.
  • Вы также увидите, что эти антипаттерны вытекают из проблем производительности и что, помимо «ручного» подхода к улучшению SQL-запросов, вы можете анализировать свои запросы также более структурированным, углубленным способом, используя некоторые другие инструменты, которые помогают увидеть план запроса; И,
  • Вы вкратце узнаете о time complexity и big O notation, для получения представления о сложности плана выполнения во времени перед выполнением запроса;
  • Вы кратко узнаете о том, как оптимизировать запрос.

 

Почему следует изучать SQL для работы с данными?


SQL далеко не мертв: это один из самых востребованных навыков, который вы находите в описаниях должностей из индустрии обработки и анализа данных, независимо от того, претендуете ли вы на аналитику данных, инженера данных, специалиста по данным или на любые другие роли. Это подтверждают 70% респондентов опроса О 'Рейли (O' Reilly Data Science Salary Survey) за 2016 год, которые указывают, что используют SQL в своем профессиональном контексте. Более того, в этом опросе SQL выделяется выше языков программирования R (57%) и Python (54%).

Вы получаете картину: SQL — это необходимый навык, когда вы работаете над получением работы в индустрии информатики.

Неплохо для языка, который был разработан в начале 1970-х, верно?

Но почему именно так часто используется? И почему он не умер, несмотря на то, что он существует так долго?

Есть несколько причин: одной из первых причин могло бы стать то, что компании в основном хранят данные в реляционных системах управления базами данных (RDBMS) или в реляционных системах управления потоками данных (RDSMS), и для доступа к этим данным нужен SQL. SQL — это lingua franca данных: он дает возможность взаимодействовать практически с любой базой данных или даже строить свою собственную локально!

Если этого еще недостаточно, имейте в виду, что существует довольно много реализаций SQL, которые несовместимы между вендорами и не обязательно соответствуют стандартам. Знание стандартного SQL, таким образом, является для вас требованием найти свой путь в индустрии (информатики).

Кроме того, можно с уверенностью сказать, что к SQL также присоединились более новые технологии, такие как Hive, интерфейс языка запросов, похожий на SQL, для запросов и управления большими наборами данных, или Spark SQL, который можно использовать для выполнения запросов SQL. Опять же, SQL, который вы там найдете, будет отличаться от стандарта, который вы могли бы узнать, но кривая обучения будет значительно проще.

Если вы хотите провести сравнение, рассматривайте его как обучение линейной алгебре: приложив все эти усилия в этот один предмет, вы знаете, что вы сможете использовать его, чтобы также освоить машинное обучение!

Короче говоря, вот почему вы должны изучить этот язык запросов:
 

  • Его довольно легко освоить, даже для новичков. Кривая обучения довольно проста и постепенна, поэтому вы будете писать запросы в кратчайшие сроки.
  • Он следует принципу «учись один раз, используй везде», так что это отличное вложение твоего времени!
  • Это отличное дополнение к языкам программирования; В некоторых случаях написание запроса даже предпочтительнее написания кода, потому что он более производительный!
  • ...


Чего вы все еще ждете? :)
 

Обработка SQL и выполнение запросов


Чтобы повысить производительность вашего SQL-запроса, вы сначала должны знать, что происходит внутри, когда вы нажимаете ярлык для выполнения запроса.

Сначала запрос разбирается в «дерево разбора» (parse tree); Запрос анализируется на предмет соответствия синтаксическим и семантическим требованиям. Синтаксический анализатор создает внутреннее представление входного запроса. Затем эти выходные данные передаются в механизм перезаписи.

Затем оптимизатор должен найти оптимальное выполнение или план запроса для данного запроса. План выполнения точно определяет, какой алгоритм используется для каждой операции, и как координируется выполнение операций.

Чтобы найти наиболее оптимальный план выполнения, оптимизатор перечисляет все возможные планы выполнения, определяет качество или стоимость каждого плана, принимает информацию о текущем состоянии базы данных, а затем выбирает наилучший из них в качестве окончательного плана выполнения. Поскольку оптимизаторы запросов могут быть несовершенными, пользователям и администраторам баз данных иногда приходится вручную изучать и настраивать планы, созданные оптимизатором, чтобы повысить производительность.

Теперь вы, вероятно, задаетесь вопросом, что считается «хорошим планом запроса».

Как вы уже читали, качество стоимости плана играет немаловажную роль. Более конкретно, такие вещи, как количество дисковых операций ввода-вывода (disk I/Os), которые требуются для оценки плана, стоимость CPU плана и общее время отклика, которое может наблюдать клиент базы данных, и общее время выполнения, имеют важное значение. Вот тут-то и возникнет понятие сложности времени (time complexity). Подробнее об этом вы узнаете позже.

Затем выбранный план запроса выполняется, оценивается механизмом выполнения системы и возвращаются результаты запроса.
 


 

Написание SQL-запросов


Из предыдущего раздела, возможно, не стало ясно, что принцип Garbage In, Garbage Out (GIGO) естественным образом проявляется в процессе обработки и выполнения запроса: тот, кто формулирует запрос, также имеет ключи к производительности ваших запросов SQL. Если оптимизатор получит плохо сформулированный запрос, он сможет сделать только столько же…

Это означает, что есть некоторые вещи, которые вы можете сделать, когда пишете запрос. Как вы уже видели во введении, ответственность тут двоякая: речь идет не только о написании запросов, которые соответствуют определенному стандарту, но и о сборе идей о том, где проблемы производительности могут скрыться в вашем запросе.

Идеальная отправная точка — подумать о «местах» в ваших запросах, где могут возникнуть проблемы. И, в общем, есть четыре ключевых слова, в которых новички могут ожидать возникновения проблем с производительностью:
 

  • Условие WHERE;
  • Любые ключевые слова INNER JOIN или LEFT JOIN; А также,
  • Условие HAVING;


Конечно, этот подход прост и наивен, но, для новичка, эти пункты являются отличными указателями, и можно с уверенностью сказать, что когда вы только начинаете, именно в этих местах происходят ошибки и, как ни странно, где их также трудно заметить.

Тем не менее, вы также должны понимать, что производительность — это нечто, что должно стать значимым. Однако просто сказать, что эти предложения и ключевые слова плохи — это не то, что нужно, когда вы думаете о производительности SQL. Наличие предложения WHERE или HAVING в запросе не обязательно означает, что это плохой запрос…

Ознакомьтесь со следующим разделом, чтобы узнать больше об антипаттернах и альтернативных подходах к построению вашего запроса. Эти советы и рекомендации предназначены в качестве руководства. То, как и если вам действительно нужно переписать ваш запрос, зависит, помимо прочего, от количества данных, базы данных и количества раз, которое вам нужно для выполнения запроса. Это полностью зависит от цели вашего запроса и иметь некоторые предварительные знания о базе данных, с которой вы будете работать, имеет решающее значение!
 

1. Извлекате только необходимые данные


Умозаключение «чем больше данных, тем лучше» — не обязательно должна соблюдаться при написании SQL: вы рискуете не только запутаться, получив больше данных, чем вам действительно нужно, но и производительность может пострадать от того, что ваш запрос получает слишком много данных.

Вот почему, как правило, стоит обратить внимание на оператор SELECT, предложение DISTINCT и оператор LIKE.

 

Оператор SELECT


Первое, что уже можно проверить, когда вы написали запрос, является ли инструкция SELECT максимально компактной. Целью здесь должно быть удаление ненужных столбцов из SELECT. Таким образом вы заставляете себя только извлекать данные, которые служат вашей цели запроса.

Если у вас есть коррелированные подзапросы с EXISTS, вы должны попытаться использовать константу в операторе SELECT этого подзапроса вместо выбора значения фактического столбца. Это особенно удобно, когда вы проверяете только существование.

Помните, что коррелированный подзапрос является подзапросом, использующим значения из внешнего запроса. И обратите внимание, что, несмотря на то, что NULL может работать в этом контексте как «константа», это очень запутанно!

Рассмотрим следующий пример, чтобы понять, что подразумевается под использованием константы:

SELECT driverslicensenr, name                                   
 FROM Drivers                                             
 WHERE EXISTS                                             
        (SELECT '1'                                              
        FROM Fines                                               
        WHERE fines.driverslicensenr = drivers.driverslicensenr); 

Совет: полезно знать, что наличие коррелированного подзапроса не всегда является хорошей идеей. Вы всегда можете рассмотреть возможность избавиться от них, например, переписав их с помощью INNER JOIN:

SELECT driverslicensenr, name                                   
 FROM drivers                                             
 INNER JOIN fines ON fines.driverslicensenr = drivers.driverslicensenr; 

 

Операция DISTINCT


Инструкция SELECT DISTINCT используется для возврата только различных значений. DISTINCT — это пункт, которого, безусловно, следует стараться избегать, если можно. Как и в других примерах, время выполнения увеличивается только при добавлении этого предложения в запрос. Поэтому всегда полезно рассмотреть, действительно ли вам нужна эта операция DISTINCT, чтобы получить результаты, которые вы хотите достичь.
 

Оператор LIKE


При использовании оператора LIKE в запросе индекс не используется, если шаблон начинается с % или _. Это не позволит базе данных использовать индекс (если он существует). Конечно, с другой точки зрения, можно также утверждать, что этот тип запроса потенциально оставляет возможность для получения слишком большого количества записей, которые не обязательно удовлетворяют цели запроса.

Опять же, знание данных, хранящихся в базе данных, может помочь вам сформулировать шаблон, который будет правильно фильтровать все данные, чтобы найти только строки, которые действительно важны для вашего запроса.
 

 

2. Ограничьте свои результаты


Если вы не можете избежать фильтрации вашего оператора SELECT, вы можете ограничить свои результаты другими способами. Вот здесь и подходят такие подходы, как предложение LIMIT и преобразования типов данных.
 

Операторы TOP, LIMIT и ROWNUM


Можно добавить операторы LIMIT или TOP в запросы, чтобы задать максимальное число строк для результирующего набора. Вот несколько примеров:

  SELECT TOP 3 * 
  FROM Drivers;


Обратите внимание, что вы можете дополнительно указать PERCENT, например, если вы измените первую строку запроса с помощью SELECT TOP 50 PERCENT *.

SELECT driverslicensenr, name                                   
 FROM Drivers 
 LIMIT 2;

Кроме того, можно добавить предложение ROWNUM, эквивалентное использованию LIMIT в запросе:

SELECT *
FROM Drivers
WHERE driverslicensenr = 123456 AND ROWNUM <= 3;

 

Преобразования типов данных


Всегда следует использовать наиболее эффективные, т.е. наименьшие, типы данных. Всегда есть риск, когда вы предоставляете огромный тип данных, когда меньший будет более достаточным.

Однако при добавлении преобразования типа данных в запрос увеличивается только время выполнения.

Альтернатива заключается в том, чтобы максимально избежать преобразования типов данных. Обратите внимание также на то, что не всегда возможно удалить или пропустить преобразование типа данных из запросов, но при этом следует обязательно стремиться к их включению и что при этом необходимо проверить эффект добавления перед выполнением запроса.
 

3. Не делайте запросы более сложными, чем они должны быть


Преобразования типов данных приводят вас к следующему пункту: вам не следует чрезмерно проектировать ваши запросы. Постарайтесь сделать их простыми и эффективными. Это может показаться слишком простым или глупым даже для того, чтобы быть подсказкой, главным образом потому, что запросы могут быть сложными.

Однако в примерах, упомянутых в следующих разделах, вы увидите, что вы можете легко начать делать простые запросы более сложными, чем они должны быть.
 

Оператор OR


Когда вы используете оператор OR в своем запросе, скорее всего, вы не используете индекс.

Помните, что индекс — это структура данных, которая повышает скорость поиска данных в таблице базы данных, но это обходится дорого: потребуются дополнительные записи и потребуется дополнительное место для хранения, чтобы поддерживать структуру данных индекса. Индексы используются для быстрого поиска или поиска данных без необходимости искать каждую строку в базе данных при каждом обращении к таблице базы данных. Индексы могут быть созданы с использованием одного или нескольких столбцов в таблице базы данных.

Если вы не используете индексы, включенные в базу данных, выполнение вашего запроса неизбежно займет больше времени. Вот почему лучше всего искать альтернативы использованию оператора OR в вашем запросе;

Рассмотрим следующий запрос:

SELECT driverslicensenr, name
FROM Drivers
WHERE driverslicensenr = 123456
OR driverslicensenr = 678910
OR driverslicensenr = 345678;

Оператор можно заменить на:

Условие с IN; или

SELECT driverslicensenr, name
FROM Drivers
WHERE driverslicensenr IN (123456, 678910, 345678);

Две инструкции SELECT с UNION.

Совет: здесь вы должны быть осторожны, чтобы не использовать ненужную операцию UNION, потому что вы просматриваете одну и ту же таблицу несколько раз. В то же время вы должны понимать, что когда вы используете UNIONв своем запросе, время выполнения увеличивается. Альтернативы операции UNION: переформулировка запроса таким образом, чтобы все условия были помещены в одну инструкцию SELECT, или использование OUTER JOIN вместо UNION.

Совет: имейте также в виду, что, хотя OR — и другие операторы, которые будут упомянуты в следующих разделах — скорее всего, не используют индекс, поиск по индексу не всегда предпочтителен!

 

Оператор NOT


Когда ваш запрос содержит оператор NOT, вполне вероятно, что индекс не используется, как и с оператором OR. Это неизбежно замедлит ваш запрос. Если вы не знаете, что здесь подразумевается, рассмотрите следующий запрос:

SELECT driverslicensenr, name
FROM Drivers
WHERE NOT (year > 1980);

Этот запрос, безусловно, будет выполняться медленнее, чем вы, возможно, ожидаете, в основном потому, что он сформулирован гораздо сложнее, чем может быть: в таких случаях, как этот, лучше всего искать альтернативу. Рассмотрите возможность замены NOT операторами сравнения, такими как >, <> или !>; Приведенный выше пример действительно может быть переписан и выглядеть примерно так:

SELECT driverslicensenr, name
FROM Drivers
WHERE year <= 1980;


Это уже выглядит лучше, не так ли?
 

Оператор AND


Оператор AND — это другой оператор, который не использует индекс и который может замедлить запрос, если он используется чрезмерно сложным и неэффективным образом, как в следующем примере:

SELECT driverslicensenr, name
FROM Drivers
WHERE year >= 1960 AND year <= 1980;


Лучше переписать этот запрос, используя оператор BETWEEN:

SELECT driverslicensenr, name
FROM Drivers
WHERE year BETWEEN 1960 AND 1980;

 

Операторы ANY и ALL


Кроме того, операторы ANY и ALL — это те операторы, с которыми вам следует быть осторожным, поскольку, если включить их в свои запросы, индекс не будет использоваться. Здесь пригодятся альтернативные функции агрегирования, такие как MIN или MAX.

Совет: в тех случаях, когда вы используете предлагаемые альтернативы, вы должны знать о том, что все функции агрегации, такие как SUM, AVG, MIN, MAX над многими строками, могут привести к длительному запросу. В таких случаях можно попытаться минимизировать количество строк для обработки или предварительно вычислить эти значения. Вы еще раз видите, что важно знать о своей среде, своей цели запроса,… Когда вы принимаете решение о том, какой запрос использовать!
 

Изолируйте столбцы в условиях


Также в случаях, когда столбец используется в вычислении или в скалярной функции, индекс не используется. Возможным решением было бы просто выделить конкретный столбец, чтобы он больше не был частью вычисления или функции. Рассмотрим следующий пример:

SELECT driverslicensenr, name
FROM Drivers
WHERE year + 10 = 1980;


Это выглядит забавно, а? Вместо этого попробуйте пересмотреть расчет и переписать запрос примерно так:

SELECT driverslicensenr, name
FROM Drivers
WHERE year = 1970;

 

4. Отсутствие грубой силы

Этот последний совет означает, что не следует пытаться ограничить запрос слишком сильно, так как это может повлиять на его производительность. Это особенно справедливо для соединений и для предложения HAVING.
 

Порядок таблиц в соединениях


При соединении двух таблиц может быть важно учитывать порядок таблиц в соединении. Если видно, что одна таблица значительно больше другой, может потребоваться переписать запрос так, чтобы самая большая таблица помещалась последней в соединении.
 

Избыточные условия при соединениях


При добавлении слишком большого количества условий к соединениям SQL обязан выбрать определенный путь. Однако может быть, что этот путь не всегда является более эффективным.
 

Условие HAVING


Условие HAVING было первоначально добавлено в SQL, так как ключевое слово WHERE не могло использоваться с агрегатными функциями. HAVING обычно используется с операцией GROUP BY, чтобы ограничить группы возвращаемых строк только теми, которые удовлетворяют определенным условиям. Однако, если это условие используется в запросе, индекс не используется, что, как вы уже знаете, может привести к тому, что запрос на самом деле не так хорошо работает.

Если вы ищете альтернативу, попробуйте использовать условие WHERE.

Рассмотрим следующие запросы:

SELECT state, COUNT(*)
  FROM Drivers
 WHERE state IN ('GA', 'TX')
 GROUP BY state
 ORDER BY state
SELECT state, COUNT(*)
  FROM Drivers
 GROUP BY state
HAVING state IN ('GA', 'TX')
 ORDER BY state


Первый запрос использует предложение WHERE, чтобы ограничить количество строк, которые необходимо суммировать, тогда как второй запрос суммирует все строки в таблице, а затем использует HAVING, чтобы отбросить вычисленные суммы. В таких случаях вариант с предложением WHERE явно лучше, так как вы не тратите ресурсы.

Видно, что речь идет не об ограничении результирующего набора, а об ограничении промежуточного числа записей в запросе.

Следует отметить, что различие между этими двумя условиями заключается в том, что предложение WHERE вводит условие для отдельных строк, в то время как предложение HAVING вводит условие для агрегаций или результатов выбора, где один результат, такой как MIN, MAX, SUM,… был создан из нескольких строк.

Вы видите, оценка качества, написание и переписывание запросов не является простой задачей, если учесть, что они должны быть максимально производительными; Предотвращение антипаттернов и рассмотрение альтернативных вариантов также будут частью ответственности при написании запросов, которые необходимо выполнять на базах данных в профессиональной среде.

Этот список был лишь небольшим обзором некоторых антипаттернов и советов, которые, надеюсь, помогут начинающим; Если вы хотите получить представление о том, что более старшие разработчики считают наиболее частыми антиобразцами, ознакомьтесь с этим обсуждением.
 

Set-based против процедурных подходов к написанию запросов

 

В вышеприведенных антипаттернах подразумевалось то, что они фактически сводятся к разнице в основанных на наборах и процедурных подходах к построению ваших запросов.

Процедурный подход к запросам — это подход, очень похожий на программирование: вы говорите системе, что делать и как это делать.

Примером этого являются избыточные условия в соединениях или случаи, когда вы злоупотребляете условями HAVING, как в приведенных выше примерах, в которых вы запрашиваете базу данных, выполняя функцию и затем вызывая другую функцию, или вы используете логику, содержащую условия, циклы, пользовательские функции (UDF), курсоры,… чтобы получить конечный результат. При таком подходе вы часто будете запрашивать подмножество данных, затем запрашивать другое подмножество данных и так далее.

Неудивительно, что этот подход часто называют «пошаговым» или «построчным» запросом.

Другой подход — подход, основанный на наборе, где вы просто указываете, что делать. Ваша роль состоит в указании условий или требований для результирующего набора, который вы хотите получить из запроса. То, как ваши данные извлекаются, вы оставляете внутренним механизмам, которые определяют реализацию запроса: вы позволяете ядру базы данных определять лучшие алгоритмы или логику обработки для выполнения вашего запроса.

Поскольку SQL основан на наборах, неудивительно, что этот подход будет более эффективным, чем процедурный, и он также объясняет, почему в некоторых случаях SQL может работать быстрее, чем код.

Совет основанный на наборах подход к запросам — также тот, который большинство ведущих работодателей в отрасли информационных технологий попросит вас освоить! Часто необходимо переключаться между этими двумя типами подходов.

Обратите внимание, что если вам когда либо понадобится процедурный запрос, вы должны рассмотреть возможность его переписывания или рефакторинга.

В следующей части будут расмотрены план и оптимизация запросов (Часть 2)

Источник Хабр

sql query execution plan tuning antipatterns

См. также

HighLoad оптимизация Программист Платформа 1С v8.3 Бесплатно (free)

Метод очень медленно работает, когда параметр приемник содержит намного меньше свойств, чем источник.

06.06.2024    9260    Evg-Lylyk    61    

44

HighLoad оптимизация Программист Платформа 1С v8.3 Конфигурации 1cv8 Бесплатно (free)

Анализ простого плана запроса. Оптимизация нагрузки на ЦП сервера СУБД используя типовые индексы.

13.03.2024    5097    spyke    28    

49

HighLoad оптимизация Программист Платформа 1С v8.3 Бесплатно (free)

Оказывается, в типовых конфигурациях 1С есть, что улучшить!

13.03.2024    7573    vasilev2015    20    

42

HighLoad оптимизация Инструменты администратора БД Системный администратор Программист Платформа 1С v8.3 Конфигурации 1cv8 Абонемент ($m)

Обработка для простого и удобного анализа настроек, нагрузки и проблем с SQL сервером с упором на использование оного для 1С. Анализ текущих запросов на sql, ожиданий, конвертация запроса в 1С и рекомендации, где может тормозить.

2 стартмани

15.02.2024    12422    241    ZAOSTG    80    

115

HighLoad оптимизация Системный администратор Программист Платформа 1С v8.3 Конфигурации 1cv8 Абонемент ($m)

Принимать, хранить и анализировать показания счетчиков (метрики) в базе 1С? Почему бы нет? Но это решение быстро привело к проблемам с производительностью при попытках построить какую-то более-менее сложную аналитику. Переход на PostgresSQL только временно решил проблему, т.к. количество записей уже исчислялось десятками миллионов и что-то сложное вычислить на таких объемах за разумное время становилось все сложнее. Кое-что уже практически невозможно. А что будет с производительностью через пару лет - представить страшно. Надо что-то предпринимать! В этой статье поделюсь своим первым опытом применения СУБД Clickhouse от Яндекс. Как работает, что может, как на нее планирую (если планирую) переходить, сравнение скорости работы, оценка производительности через пару лет, пример работы из 1С. Все это приправлено текстами запросов, кодом, алгоритмами выполненных действий и преподнесено вам для ознакомления в этой статье.

1 стартмани

24.01.2024    5669    glassman    18    

40

HighLoad оптимизация Программист Платформа 1С v8.3 Конфигурации 1cv8 Абонемент ($m)

Встал вопрос: как быстро удалить строки из ТЗ? Рассмотрел пять вариантов реализации этой задачи. Сравнил их друг с другом на разных объёмах данных с разным процентом удаляемых строк. Также сравнил с выгрузкой с отбором по структуре.

09.01.2024    14018    doom2good    49    

71
Комментарии
Подписаться на ответы Инфостарт бот Сортировка: Древо развёрнутое
Свернуть все
1. chg 24.03.20 09:08 Сейчас в теме
Подпишусь пожалуй, полезно, благодарю)
2. MishaD 14 24.03.20 11:28 Сейчас в теме
В 1с те же рекомендации. Хотя не помню, чтобы не рекомендовалось использовать "И". Вместо "Объединить" использовать полное соединение ? Всегда считал, что полное соединение медленнее, хотя в основном пользуюсь "Объединить ВСЕ". Ну и рекомендация про "HAVING state IN ('GA', 'TX')" - это нечто. Как бы Having всё-таки используют с агрегатными функциями. То есть "Имеющие Сумма(Сумма) >1000".
Fox-trot; +1 Ответить
3. w.r. 650 24.03.20 20:26 Сейчас в теме
(2)
В 1с те же рекомендации. Хотя не помню, чтобы не рекомендовалось использовать "И". Вместо "Объединить" использовать полное соединение ? Всегда считал, что полное соединение медленнее, хотя в основном пользуюсь "Объединить ВСЕ".

Объединить Все(UNION ALL) не ищет дубликаты в результирующей выборке. А просто Объединить(UNION) - ищет, даже если их там нет. И на это тратятся ресурсы
Ну и рекомендация про "HAVING state IN ('GA', 'TX')" - это нечто. Как бы Having всё-таки используют с агрегатными функциями. То есть "Имеющие Сумма(Сумма) >1000".

Агрегатная функция там Count(*), то есть Количество(*)

Не обязательно агрегатная функция должна быть в условии запроса

p.s. "Имеющие Сумма(Сумма) >1000" - функция в условиях запроса - это дичь, которая кладет на лопатки sql сервер, никогда так не делайте
13. bugagashenka 203 27.03.20 08:00 Сейчас в теме
(3)p.s. "Имеющие Сумма(Сумма) >1000" - функция в условиях запроса - это дичь, которая кладет на лопатки sql сервер, никогда так не делайте"

А можно пруфы? Или хотя бы грамотное описание что делает тот же MSSQL когда видит оператор HAVING?
4. bugagashenka 203 25.03.20 07:49 Сейчас в теме
Автор, а Вы сами проверяли "проблемные места"? Вот, например, я, как человек недоверчивый, проверил.

Оператор OR

Когда вы используете оператор OR в своем запросе, скорее всего, вы не используете индекс.


Запрос


Запрос SQL


План запроса


Как видно, что ИЛИ Хорошо попадает в индекс. Миф разрушен.


При использовании оператора LIKE в запросе индекс не используется, если шаблон начинается с % или _. Это не позволит базе данных использовать индекс (если он существует).


Запрос 1С


Запрос SQL и План


Миф разрушен.

Оператор AND

Оператор AND — это другой оператор, который не использует индекс и который может замедлить запрос, если он используется чрезмерно сложным и неэффективным образом, как в следующем примере


Запрос 1С


Запрос SQL


План в присоединенном файле.
Миф разрушен.
Прикрепленные файлы:
6. ai1804@mail.ru 25.03.20 08:20 Сейчас в теме
(4)
Clustered Index Seek


не все так просто..

..Оператор OR.. - оптимизатор ms sql становится все умнее, но сложные случаи по-прежнему может и не осилить.. пользую ms sql 2017, и по-прежнему попадаются примеры, когда приходится что-то делать с or (и даже менять на union)

..использовании оператора LIKE.. ГДЕ Измерение1 ПОДОБНО "_А%" - ваш Clustered Index Seek сильно напоминает частичный скан, правда? а если поменять на ГДЕ Измерение1 ПОДОБНО "%А%", то может оказаться, что количество чтений со сканом осталось примерно тем же, что и с поиском - и какая тогда разница? like с % и _ плохая идея, и это увы не миф..

а вот на "не использующий индекс" WHERE year >= 1960 AND year <= 1980 и правда смотрю с удивлением.. может речь про составные индексы, на первом месте в которых дата?


подытожил бы так: "не верь слепо шаблонам и правилам, в них есть зерно, но стоит проверять реальные запросы планами исполнения и статистикой"
7. bugagashenka 203 25.03.20 09:27 Сейчас в теме
(6) возможно, автор имел ввиду случай, когда интервальный поиск по первому полю ключа. Но и в таком случае
ГДЕ Измерение1 Между &Дата1 И &Дата2 И Измерение2 = &П приведет к тому, что по Измерению1 будет поиск в индексе, а &П уйдет в предикаты сканирования того, что выдаст поиск.

по поводу частичного сканирования да, тут есть нюанс и бездумно лайкать не хорошо.
5. bugagashenka 203 25.03.20 07:57 Сейчас в теме
Осмелюсь дать совет всем, особенно тем, кто только начал осваивать оптимизацию и СУБД. Статьи на инфостарте ложь, если в них нет пруфов, планов запроса или комментариев по нюансам. Сухие факты без доказательств чаще всего являются признаком того, что автор сам не проверил то, что написал, бумага то все стерпит. В данном случае автор трижды создал тему для того, чтобы молодой боец начитавшись его с пеной у рта доказывал, как плохо лайкать в запросе, использовать или и т.п. Такие же темы рождают пищу холиварам по tempdb.

И самый главный совет: ПРОВЕРЯЙТЕ ВСЕ, ЧТО ПИШУТ В ИНТЕРНЕТЕ
8. w.r. 650 25.03.20 18:17 Сейчас в теме
(5)
ются признаком того, что автор сам не проверил то, что написал, бумага то все стерпит. В данном случае автор трижды создал тему для того, чтобы молодой боец начитавшись его с пеной у рта доказывал, как плохо лайкать в запросе, использовать или и т.п. Такие же темы рождают пищу холиварам по tempdb.

Не понимаешь разницы между частными случаями и общими рекомендациями
9. bugagashenka 203 25.03.20 18:44 Сейчас в теме
(8)случаи, которые я написал работают в 99% случаев. Проверь ,) И не пость больше ересь, джуны могут подхватить и эту дурь потом не выбить, начитаются всякого в этих ваших интырнетах
10. w.r. 650 26.03.20 20:20 Сейчас в теме
(9) то есть ты от меня требуешь всеохватывающих тестов, а тебе я должен верить и твоим придуманным 99% ) Очень логично

Не проще ли начать себя?

Вот тебе субд и версии для тестирования, поддерживаемые 1с. Хотя бы для Архитектура x86-64

https://v8.1c.ru/tekhnologii/sistemnye-trebovaniya-1s-predpriyatiya-8/
12. bugagashenka 203 27.03.20 07:50 Сейчас в теме
(10) Это не придуманные 99%, а выявленные опытным путем. К тому же, я в своем комментарии указал на текст запроса, текст запроса в MSSQL, план запроса. Любой специалист, который понимает в этом увидит, насколько ты сейчас не прав. Включил истерику из-за того, что твою копипасту решили покритиковать, что намекает на то, что ты только в начале своей карьеры. Не переживай, с опытом это пройдет.
14. w.r. 650 28.03.20 02:40 Сейчас в теме
(12) тесты проводились на какой версии платформы 1С и какой версии MS SQL. Давай начнём с этого. Тебе уже выше писали, что поведение зависит от версии СУБД. А ещё сами СУБД разные и у каждой свой движок с собственным анализатором запросов. Но как-то до тебя не дошло

p.s. Бомбит у тебя сильно и это хорошо, может чему-то научишься )
15. bugagashenka 203 28.03.20 16:38 Сейчас в теме
(14) мда, ты, конечно, молодец, что перепечатываешь сюда разные статейки. Но без проверки это всего лишь бездумная копипаста.
П.С. Мне у тебя учиться нечему, разве что плохому тону, невежеству и хамству ,)
16. bugagashenka 203 28.03.20 16:45 Сейчас в теме
(14)и да, в твоей "статье" не указаны версии СУБД, даже вендора. Я тебе показал на платформах 8.2, 8.3 и СУБД MSSQL 2017 и 2019.
Твоя очередь. Спорим, ты не тестировал свою копипасту?
18. w.r. 650 29.03.20 22:18 Сейчас в теме
(16) 8.2 и 8.3 вообще ни о чем не говорит. Огромная разница между 8.3.3 и 8.3.16. Версии MS SQL примерно туда же. Еще распространены достаточно широко версии MS SQL 2012 и 2008. Я не говорю уже про Postgres
19. bugagashenka 203 30.03.20 07:20 Сейчас в теме
(18) Но ты не проверил ни одну из версий. Ни 8.3.3, ни 8.3.16. Наш разговор зашел в тупик, и из твоих статей я вижу, что от себя ты добавляешь только "Предлагаю вашему вниманию перевод статьи" + Имя автора. При этом, не удосуживаешься даже проверить, что там написано.
П.С. Читай взрослых авторов, изучай поведение платформы при highload, запишись на курсы
На этом и закончим. Если у тебя хватит мозгов, ты мне не ответишь
11. user1371486 26.03.20 23:07 Сейчас в теме
Статья уровня "блондинко".
Но всегда найдется куча экспердов, защищающих любого автора, даже самое днище.
Если же знать, что на страничке первоисточника англицкими по белому написано:
Karlijn Willems on Medium. Data Science Journalist

то все становится понятно
17. Fox-trot 163 28.03.20 17:20 Сейчас в теме
предлагаю не париться и поверить, что анализатор все сделает как ему надо
20. Hatson 536 25.06.21 11:54 Сейчас в теме
Не используйте оператор SELECT и вообще запросы, ведь они тратят ваше время, а жизнь-то проходит.

Производительность более не важна
Оставьте свое сообщение