Прочитал статью ChatGPT в помощь 1С-разработчику: мост между языками программирования и понял, что теоретическая часть мне непонятна. Там где про искусственный нейрон и виды нейросетей. Тогда я зашел на сайт https://openai01.net/ru и стал "терзать" искусственный интеллект вопросами по теоретической части статьи. Весь чат с языковой моделью O1 можно посмотреть здесь. Там довольно длинная "простыня".
Самое главное об этом сайте. Сайт https://openai01.net разрешает задавать только 2 вопроса в день, но тут есть лайфхак. Нужно зайти на страницу Мои кредиты, скопировать реферальную ссылку и попросить друга по ней перейти. Друг задаст нейросети вопрос и вам начислится 30 кредитов. То есть вы сможете еще 30 вопросов задать.
Итак, я скопировал теоретическую часть статьи (кроме истории нейросетей) в чат с O1 и попросил ее вкратце пересказать содержание.
Ответ нейросети:
Статья представляет собой введение в основы нейронных сетей. Она начинается с объяснения работы искусственного нейрона, основного элемента любой нейросети. Описывается процесс обработки входных данных: умножение входных значений на веса, суммирование результатов, добавление смещения и применение функции активации (например, ReLU).
Далее автор подчеркивает важность весов в обучении нейросетей и приводит пример с моделью Llama от Meta, иллюстрируя различия между закрытыми и открытыми весами.
Статья также рассматривает пример «Hello, World!» для нейросетей — задачу распознавания рукописных цифр с использованием библиотеки TensorFlow/Keras. Описывается структура простой модели нейронной сети, процесс обучения и достижение высокой точности распознавания.
Затем автор описывает три типа нейронных сетей:
- Полносвязные сети — используются для классификации и регрессии.
- Сверточные сети — применяются для анализа изображений и видео, распознавая различные уровни детализации.
- Рекуррентные сети — предназначены для обработки последовательностей, таких как текст, но имеют ограничения по скорости и запоминанию длинных последовательностей.
В завершение статья рассказывает о трансформерах, новой архитектуре нейросетей, которая преодолевает ограничения рекуррентных сетей благодаря параллельной обработке и механизму внимания. Это позволяет эффективно обрабатывать большие объемы информации и учитывать взаимосвязи между всеми элементами входных данных.
Таким образом, статья предоставляет общее понимание основ нейронных сетей, их типов и применения, а также современных достижений в области архитектуры.
Немножко стало попроще, но все равно непонятно. Дальше я стал "забрасывать" нейросеть вопросами. Приведу, с моей точки зрения, самые интересные пары вопрос-ответ.
Давай начнем с этого абзаца "Она начинается с объяснения работы искусственного нейрона, основного элемента любой нейросети. Описывается процесс обработки входных данных: умножение входных значений на веса, суммирование результатов, добавление смещения и применение функции активации (например, ReLU)."
Нужен какой-то пример из жизни. Как я понял, в искусственный нейрон что-то вкладывают и он что-то выдает в ответ. И он как-то учится и что-то запоминает? Давай по порядку.
Представьте, что искусственный нейрон – это некий «мини-решатель задач». Он принимает на вход несколько чисел, обрабатывает их по определенным правилам и выдает одно число на выходе. Чтобы понять это на житейском примере, можно сравнить нейрон с человеком, принимающим решение о покупке продуктов.
Пример из жизни:
Допустим, вы решаете, купить ли в магазине молоко. Какие факторы вы учитываете?
- Сколько молока осталось в холодильнике (например, литр)?
- Собираетесь ли вы сегодня готовить блюдо, в котором понадобится молоко?
- Есть ли скидка на молоко в магазине?
- Далеко ли идти до магазина?
Каждый из этих факторов – это как входное число для нашего искусственного нейрона. Представьте, что мы назначили каждый фактору некоторую значимость, или «вес». Например, нехватка молока дома может иметь большой вес, а расстояние до магазина – поменьше, если вы любите прогулки.
Таким образом, процесс обучения заключается в постоянном подборе правильных весов? Чтобы при разных входных данных получался правильный результат?
Да, вы правильно поняли. Процесс обучения нейронной сети действительно заключается в постоянном подборе и корректировке весов, чтобы при различных входных данных нейросеть выдавала правильные или максимально точные результаты.
Вот этот абзац объясни, пож-та. "Например, когда компания Meta представила первую версию своей нейросети Llama, веса модели оставались закрытыми – модель можно было потрогать, но ее нельзя было дообучить. Но в июле 2023 года, при выпуске второй версии Llama 2 в формате open source, Meta сделала веса открытыми, и с этой моделью уже можно работать более плотно".
Что значит Meta сделала веса открытыми? Можно было загрузить базу данных нейросети Llama к себе на компьютер и дообучить какими-то своими данными? Насколько это трудоемко? Какие нужны вычислительные мощности?
Можно ли было загрузить базу данных нейросети Llama к себе на компьютер и дообучить её?
Да, с выпуском Llama 2 как open source модели, пользователи получили возможность:
- Скачать модель и её веса на свой компьютер или сервер.
- Использовать готовую модель для выполнения задач (например, генерации текста, классификации).
- Дообучать модель на специфических данных для улучшения её производительности в определённых задачах (например, в медицинской сфере, юриспруденции и т.д.).
Вот это меня еще смутило в статье, там где рассказывается про простую нейронную сеть распознающую цифры:
"Входной слой (зеленый) содержит 784 нейрона – по числу пикселей (28?28).
Скрытый слой (синий) состоит из 100 нейронов.
Выходной слой (красный) содержит 10 нейронов – цифры от 0 до 9."
Почему автор апеллирует к цветам RGB? Меня это наталкивает на мысль что нейронная сеть еще и цвета распознает. Хотя в твоем примере речь только про яркость пикселей, никаких цветов в твоем примере нет. Что мог иметь ввиду автор?
Цвета, упомянутые автором, служат исключительно для визуального разделения и идентификации различных слоёв нейронной сети на иллюстрациях или диаграммах. Они не указывают на то, что нейросеть обрабатывает цветовую информацию (RGB) в данном примере. В случае с распознаванием рукописных цифр используются градации яркости пикселей, а не цветовые данные.
Я не стал приводить ответы полностью, чтобы не загружать читателя лишней информацией. Попробуйте задать свои вопросы, напишите в комментариях ссылки на заданные вопросы. В конце страницы с перепиской с нейросетью можно скопировать ссылку на заданный вопрос. Почитаем вместе, будет интересно.